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ABSTRACT
JavaScript is a scripting language that plays a prominent role in
modern web applications. It is dynamic in nature and interacts
heavily with the Document Object Model (DOM) at runtime. These
characteristics make providing code completion support to Java-
Script programmers particularly challenging. We propose an auto-
mated technique that reasons about existing DOM structures, dy-
namically analyzes the JavaScript code, and provides code com-
pletion suggestions for JavaScript code that interacts with the DOM
through its APIs. Our automated code completion scheme is imple-
mented in an open source tool called DOMPLETION. The results of
our empirical evaluation indicate that (1) DOM structures exhibit
patterns, which can be extracted and reasoned about in the con-
text of code completion suggestions; (2) DOMPLETION can pro-
vide code completion suggestions with a recall of 89%, precision
of 90%, and an average time of 2.8 seconds.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques

General Terms
Algorithms, Design, Experimentation

Keywords
Code completion, JavaScript, DOM, Web applications

1. INTRODUCTION
Web applications are growing fast in popularity. JavaScript is

nowadays heavily used to provide user interactivity on the client-
side. However, integrated development environment (IDE) support
for web development still lags largely behind, which makes writing
JavaScript code challenging for many developers. One of the ma-
jor challenges faced by programmers is handling the interactions
between JavaScript and the Document Object Model (DOM) [2,
32]. The DOM is a standard object model representing HTML at
runtime. JavaScript uses DOM APIs for dynamically accessing,
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traversing, and updating the content, structure, and style of HTML
documents. In a prior empirical study we found that such Java-
Script-DOM interactions are responsible for the majority of pro-
grammer errors in web applications [32].

The DOM of a web application evolves at runtime due to (1)
client-side mutations through JavaScript, and/or (2) server-side dy-
namic HTML code generation. Due to the inherent difficulties of
reasoning about this dynamic DOM evolution, there is a lack of
IDE support for writing JavaScript code that performs DOM op-
erations. As a result, when writing JavaScript code, the developer
needs to consider all possible states the DOM could potentially be
in when it is accessed by the JavaScript code, which is an error-
prone [32] and time-consuming task.

Prior studies have revealed that developers make heavy use of
code completion features provided within their IDE [31], and that
they require code completion support for XML-based languages
[34] such as XHTML and XPath. Although code completion for
traditional languages such as Java has been an active research topic
[36, 24, 16, 8, 7, 30, 17], code completion for web applications and
JavaScript in particular, has received very limited attention from the
research community. To the best of our knowledge, DOM-based
code completion support for JavaScript has not been addressed in
the literature yet, which is the focus of our work.

To assist web developers in writing JavaScript code that interacts
correctly with the DOM, we propose an automated technique based
on static and dynamic analysis of the web application’s DOM struc-
ture and JavaScript code under development. Our approach (1) ex-
tracts various DOM states from the application and infers patterns
from the observed DOM tree structure; (2) captures and analyzes
all JavaScript code that interacts with the DOM; (3) reasons about
the consequences of these interactions on the DOM state; and (4)
provides code completion suggestions in terms of possible DOM
elements and properties that are accessible at that specific line of
JavaScript code. These suggestions help developers write valid
JavaScript code that correctly interacts with the DOM at runtime.
Our work makes the following main contributions:

• A discussion of the importance and main challenges behind
DOM-based code completion in JavaScript.
• A fully automated code completion technique, based on a com-

bination of static and dynamic analysis of JavaScript code and
the DOM.
• An implementation of our approach in an open source tool

called DOMPLETION.
• An empirical evaluation to asses DOMPLETION, demonstrating

its efficacy, real-world relevance and helpfulness. Our exami-
nation of five real-world web applications indicates that DOM
states do exhibit patterns in their structure, which converge and
can hence be learned. The results of our case study on three



1 ...
2 var nav = document.getElementById('site -navigation');
3 var button , menu;
4 button = nav.getElementsByTagName('h3')[0];
5 if (!button)
6 return;
7 menu = nav.getElementsByTagName('ul')[0];
8 ...

Figure 1: Example JavaScript code fragment based on Word-
Press.

open source web applications show that DOMPLETION is ca-
pable of providing code completion suggestions with a recall
of 89% and a precision of 90%. The results of our user study
indicate that DOMPLETION can reduce the development time,
while improving the overall accuracy of developers in code
completion tasks.

2. CHALLENGES AND MOTIVATION
In this section, we discuss some of the challenges faced by devel-

opers when writing JavaScript code as well as challenges involved
in providing automated code completion support for DOM.

2.1 Running Example
Figure 1 presents a JavaScript code fragment, based on the Word-

press application [41], to illustrate some of the challenges involved
in providing auto-complete features for JavaScript. Figure 2 repre-
sents the DOM structure of a subset of the webpage that the Java-
Script code in Figure 1 is interacting with. The webpage pertaining
to Figure 2 consists of a navigation menu with ID site-navigation
at the top of the webpage. The navigation menu contains one h3 el-
ement (element 8) and one ul element (element 11) that contains a
number of li elements (elements 12 to 15), constituting the menu
items.

The JavaScript code obtains references of various DOM elements
(Lines 2, 4, 7). While writing JavaScript code that interacts with
the DOM, the programmer needs to make an educated guess for
the IDs, class names and tag names of the elements; i.e., the pro-
grammer is only aware of a few possible DOM states for the par-
ticular web application. This problem is exacerbated as the size
of the application increases and the number of DOM states also
correspondingly increase. In the worst case, the programmer can
manualy inspect the DOM and gather the relevant information, but
this is highly time consuming.

The developer’s lack of knowledge about valid JavaScript-DOM
interactions can lead to scenarios in which the JavaScript code be-
haves incorrectly and results in an exception. These exceptions can
either cause the JavaScript code to terminate abnormally, or may
result in a faulty DOM state. Thus, the developer needs automated
tool support that provides suggestions about such valid interactions
while she is writing the code.

2.2 Challenges
Although JavaScript is syntactically similar to other languages

such as Java, there are a number of differences that makes JavaScript
challenging for providing code completion features.

Dynamically typed. To provide code completion, we need to an-
alyze the code and infer variable types. For strongly typed lan-
guages, static analysis is sufficient to analyze variable types, as
variables once attached to a particular type remain attached through-
out the code execution. Therefore, tools can provide auto-complete

<body>

<div id="page" 
class="hfeed site">

<header id="masthead" 
class="site-header">

<div id="main" 
class="wrapper">

<hgroup> <nav id="site-navigation" 
class="main-navigation">

<div id="primary" 
class="site-content">

... ... <h3 class="menu-
toggle"

<a class= 
"assistive-text">

<div class="nav-
menu">

...

<ul>

<li class= 
"current_page_item">

<li class= 
"current_page_item2">

<a> <a>
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Figure 2: Overview of the DOM structure for the running ex-
ample.

Table 1: Commonly used CSS selectors
Selector Example
.class .intro
#id #firstname
element p
element,element div, p
element element div p
element>element div>p
[attribute] target
[attribute=value] target=_blank

features by statically inferring the variable types. However, in a dy-
namically typed language such as JavaScript, every variable name
is bound to an object only at execution time (unless it is null); and
it is possible to bind a name to objects of different types during the
execution of the program (loose typing). For example, in Figure 1
at Line 3, the variable button is declared. However, the type of the
variable button is determined only when the assignment of vari-
able button is executed at Line 4. Further, it is possible to assign
this variable to a different type by executing a different assignment
statement within the same JavaScript code. The dynamic typed
feature of JavaScript makes it difficult to analyze the variable types
statically, as these types can be modified during program execution
[15, 23].

DOM Interactions. JavaScript code frequently interacts with and
updates the DOM, using the DOM API calls to mutate the DOM
structure. Therefore, when statically analyzing the JavaScript code,
the value of variables can either be null if the target element is
not present in DOM, or can be a value returned from the DOM.
For example, in Figure 1 at Line 2, the variable nav is pointing to
DOM element with ID site-navigation. However, without any
knowledge of DOM state, it is not clear what type of DOM element
it is, or even if it exists in the current DOM state. Therefore, to
effectively provide code completion for JavaScript code, we need to
have knowledge about the target DOM state(s). This is challenging
because the number of target DOM states can be unknown, and
statically inferring this information is difficult.

2.3 Scope of the paper
Our prior empirical studies has shown the consistent prevalence

of DOM-related issues within JavaScript code in web applications [32,
4]. Therefore we provide code completion support for the DOM in-
teractions within JavaScript code in this work.

In general, DOM interactions can be divided into three cate-
gories:



Table 2: Overview of elements present in DOM tree of Figure 2
Element Tag ID Classes

1 body - -
2 div page hfeed, site
3 header masthead site-header
4 div main wrapper
5 hgroup - -
6 nav site-navigation main-navigation
7 div primary site-content
8 h3 - menu-toggle
9 a - assistive-touch
10 div - nav-menu
11 ul - -
12 li - current_page_item
13 li - current_page_item2
14 a - -
15 a - -

1. Obtaining references to DOM elements: To interact with the
DOM from JavaScript code, the developer first needs to obtain
references to DOM elements in the appropriate DOM states.
This means that she needs to have knowledge of the DOM ele-
ments in the target DOM states.

2. Modifying existing DOM elements: JavaScript developers can
use the DOM API to modify DOM elements. This requires that
the appropriate references have been obtained within JavaScript
code. The developer also needs to know the type of the DOM
element and its properties, to write meaningful code.

3. Adding/Deleting DOM elements: The DOM API can also be
used to add or delete DOM elements within the DOM. To that
end, the developer first needs to obtain references to a proper
element in the DOM tree.

In this paper, we focus on performing code completion while
obtaining references to DOM elements, as this is the most basic
step for all three DOM interactions. This is also challenging for the
developer as it requires understanding of the DOM states and their
elements, and mapping these back to the code. We also consider
the effects of programatic additions, deletions, and modifications
to the DOM, in the code completion suggestions provided to the
programmer.

3. APPROACH
Our DOM based code completion approach consists of 3 main

phases as outlined in Figure 3: (1) DOM analysis, (2) JavaScript
Code analysis, and (3) Suggestion generation.

The DOM analysis phase involves crawling the web application
and generating a list of element locators within the DOM states.
The code analysis phase involves analyzing the JavaScript code,
creating a list of in-scope variables and intercepting the DOM API
calls that include reading and writing to the DOM. The results from
the above two phases are passed to the suggestion generation phase
and combined to generate a list of auto-complete suggestions that
are presented to the developer in their IDE.

The DOM analysis phase is conducted once when the IDE is
opened and periodically in the background to explore new DOM
states by executing the in-progress JavaScript code. The code anal-
ysis and suggestion generation phases are executed every time the
developer requests code completion support using a hot-key (for
example).

3.1 Our Design
DOM interactions. Our goal is to provide code completion sup-
port to developers based on an analysis of the JavaScript code as
well as the DOM structure and its mutations. When the developer

Dom Analysis 
(Phase 1)

Code Analysis 
(Phase 2)

Suggestion Generation 
(Phase 3)

Website URL

JavaScript Code

Suggestions

Figure 3: Approach overview

invokes the code completion functionality, we need to extract a po-
tential list of valid DOM elements, i.e., elements that have been
spotted on relevant DOM states, and present that list to the devel-
oper writing the JavaScript code. The developer can then select the
desired element’s ID, tag name or class name from the presented
list.

DOM access methods such as querySelectorAll(selector),
let developers enter a CSS selector as a parameter and return the
matching DOM elements. CSS selectors use pattern matching rules
to determine which style rules apply to elements in the DOM tree.
These patterns, called selectors, may range from simple element
names to rich contextual patterns. We use CSS selectors to iden-
tify the range of possibilities for an element. As CSS selectors
can model DOM access methods such as getElementById and
getElementsByTagname universally, our technique can work with
any DOM access method or library, including the jQuery library.
Table 1 provides the list of commonly used CSS selectors. A com-
plete list of CSS selectors can be found here [9] In the following
sections, the term DOM Element Locators refer to the parameters
passed to the DOM access methods.

Assume that the developer invoked the code completion func-
tion when writing the code in Line 2 in Figure 1, just after typing
the getElementById. From the DOM tree in Figure 2, the DOM
state contains 5 different DOM elements (See Table 2) with IDs.
Therefore, our approach would show all the five elements as po-
tential candidates for the getElementByID in line 2. This way, the
developer would know exactly which elements exist in the DOM
and can choose the appropriate element for the argument to the
getElementById. However, in more complex cases, there may be
too many suggestions to be useful to the developer. Below, we con-
sider two methods for filtering the list of DOM elements to present
to the developer.

1. Hierarchical nature of DOM elements. The hierarchical po-
sitioning of DOM elements can be used for narrowing down the
scope of the suggestions presented to the developer. For example,
in Line 4 of Figure 1, the developer uses the nav parent object to
call the getElementsByTagName() function. As seen from the
code, the JavaScript object nav points to the DOM element with
ID as site-navigation, i.e., Element 6 (Figure 2); we narrow
down the search space to the child elements of element 6. In this
case, we only need to look through the child elements of Element
6, namely Elements 8–15. However, in Line 2, the developer uses
the document object as the parent object and it points to the root
node of the tree, i.e., Element 1. In this case, we will need to scan
the complete tree, i.e., Elements 2 to 15.

2. JavaScript objects in scope. At any point in the code, some
DOM elements may not be accessible from the JavaScript code.
At Line 2, the object nav points to the DOM element with ID as
site-navigation (Element 6) and is then used as a parent object
in Lines 4 and 7. This means only child elements of Element 6
(i.e., Elements 8–15) are accessible at lines 4 and 7. Therefore, to
provide meaningful code-completion suggestions at Lines 4 and 7,
we need to collect information about the declared objects in their
scope and only consider those when providing suggestions.
Usage Model and Assumptions. We make three assumptions in
our work. First, we assume that the developer has access to the en-



Table 3: Optimization techniques used to minimize the list of DOM element locators.
Optimation Type Constraints Example

Input Output Input Output

Removing Duplicates m1 = m2 m1 = m2 = m3 ul.nav-menu.toggled-on li.item
ul.nav-menu.toggled-on li.itemW1 j =W2 j W1 j =W2 j =W3 j ul.nav-menu.toggled-on li.item

Combining Similar IDs

m1 = m2 m1 = m2 = m3

ul.nav-menu.toggled-on li#item1#item2
T1 j = T2 j T1 j = T2 j = T3 j ul.nav-menu.toggled-on li#item1
Ci j =C2 j Ci j =C2 j =C3 j ul.nav-menu.toggled-on li#item2
I1 j 6= I2 j I3 j = I1 j + I2 j

Combining Similar Classes

m1 = m2 m1 = m2 = m3

ul.nav-menu.toggled-on li.item1.item2
T1 j = T2 j T1 j = T2 j = T3 j ul.nav-menu.toggled-on li.item1
Ii j = I2 j Ii j = I2 j = I3 j ul.nav-menu.toggled-on li.item2

C1 j 6=C2 j C3 j =C1 j +C2 j

tire JavaScript code of the web application, so that we can analyze
it. Second, we assume that the developer has access to the HTML
template of the website, and can hence obtain the initial DOM. This
is needed as we crawl the partially complete application to obtain
the dynamic DOM state(s). Finally, we assume that the JavaScript
code within the editor is partially complete. By partially complete,
we mean that (1) JavaScript code that is syntactically correct, (2) all
the variables in use are defined, and (3) it uses no global variables
(global variables are considered harmful [42]). The assumptions
listed above align with the JavaScript development guidelines en-
forced by various organizations [39, 19, 20, 14].

There is no special input required from the developer, other than
pressing the code completion short key while writing the code.
However, our approach can use inputs provided by the developer,
typically the first one or two letters of the desired DOM identifier,
to enhance the accuracy of code completion. Code completion is
provided when any of the functions in Table 1 or similar functions
(libraries and custom functions) are written by the developer. The
only restriction is that the library function should attempt to access
a DOM element through a list of supported DOM element locators.

The output of our approach is a list of DOM element locators
which are shown to the developer as a ranked list. The generated list
is dependent on (1) JavaScript variables in the scope, (2) the scope
of the parent element within the DOM, and (3) additions/deletions
made to the DOM on the available JavaScript code paths.

3.2 DOM Analysis
In order to provide DOM based code completion suggestions,

we first need to get information about the elements present in the
DOM. To that end we crawl the web application. Further, for each
DOM element on the obtained DOM trees, we extract its locator in-
formation. Each leaf node in the DOM is expressed as a sequence
of tag names, IDs and class names found in the hierarchy. The list
of DOM element locators is generated separately for each available
DOM state crawled. Finally, the DOM element locators generated
from all the DOM states obtained are combined to generate a su-
perset that are then used in the later phase.

Converting DOM to a List of DOM Element Locators. Every el-
ement within the DOM hierarchy can be represented as a space sep-
arated sequence of nodes beginning from the root node. Each node
is itself a DOM element and can be represented as a combination of
tag name, id and a list of classes attached to the element. For every
leaf node in the DOM, we reverse engineer a unique DOM element
locator capable of locating that element on the DOM; thereby cov-
ering all the DOM elements present within the DOM tree. The list
of DOM element locators for each DOM state is then accumulated
to generate a superset of all locator strings.

More formally, we represent the list of DOM element locators
for each state as follows:

R = {Ri | 0≤ i < n}

Ri = {Wi j | 0≤ j ≤ mi}
Wi j = Ti j ∪ Ii j ∪Ci j

Table 4: DOM element locators for Element 9 (R3)
Element

(Wi j)
Depth Tag name

(Ti j)
Id (Ii j) Class name (Ci j)

1 0 body - .home.blog.custom-
font-enabled.single-

author
2 1 div #page .hfeed.site
3 2 header #masthead .site
6 3 nav #site-navigation .main-navigation
9 4 a - .assistive-touch

where,

• R is the list of DOM element locators for each DOM state.
• Ri is the set of nodes in the ith row in the list of DOM element

locators.
• n is the total number of leaf nodes in the DOM state.
• Wi j represents the element in the ith row at jth depth.
• mi is the depth if ith leaf node.
• Ti j, Ii j, and Ci j represent the tag name, id and class names at-

tached to each node respectively.

For example, for Figure 2 the size of R i.e., total number of leaf
nodes (n) is 7. For the 3rd leaf node in Figure 2 i.e., Element 9,
the depth (m3) is 4. The DOM element locators at each level for
Element 9 (i = 3,0≤ j ≤ 4) are presented in Table 4.

As the number of DOM states increases, the number of rows in
the list of DOM element locators exponentially, thereby increasing
the space and time complexity of the approach. To effectively pro-
vide code completion suggestions, we need to compress the list of
DOM element locators of the superset that is generated at the end
of this step. We use three compression techniques: (1) eliminating
duplicate DOM element locators, (2) combining DOM element lo-
cators with similar IDs, and (3) combining DOM element locators
with similar classes.

Table 3 summarizes the techniques used to compress the repre-
sentation. The first column shows the compression technique, the
second column shows the constraints that must be satisfied by the
DOM element locators in order to be compressed, and the third
column shows the output produced by the compression after the
compression. The remaining columns illustrate the compression
techniques with examples. As seen from the examples, the DOM
hierarchical information is preserved during compression, therefore
preserving the quality of suggestions provided by DOMPLETION.

3.3 Code Analysis
This phase analyzes how a particular piece of JavaScript code

interacts with the DOM by executing different code paths in an iso-
lated environment. To do so, we need to instrument the control flow
of the program and analyze each code path separately. The overall
approach is presented in Algorithm 1. The JavaScript code in the



Algorithm 1: JavaScript Code Analysis
Data: (JavaScript Code) C
Result: DOM element locators used in the program

1 n = countNumFunctionDe f initions(C);
2 (Function Definitions) F= extractFunctionDe f initions(C);
3 (Executing Code) E= C−F;
4 m = countNumI fConditions(E);
5 (Code Paths) P=

[
E
]
;

6 while containsI f Statement(∀ elements in P) do
7 numElements = size(P);
8 for i = 0 to numElements do
9 λ = P→ pop();

10 if containsI f Statement(λ) then
11 [α,β] = generateCodePaths(λ);
12 insertLogStatements(α,β);
13 P→ push(α,β)
14 else
15 P→ push(λ)
16 end
17 end
18 end
19 R= /0;
20 while λ = P→ pop() do
21 codePath = F∪λ;
22 logs = execute(codePath);
23 R→ push(analyze(logs));
24 end
25 return R

1 ...
2 var nav = document.getElementById('site -navigation');
3 var button , menu;
4 button = nav.getElementsByTagName( 'h3' )[0];
5 ! button;
6 dompleteLog("func1 T","");
7 return;
8 menu = nav.getElementsByTagName( 'ul' )[0];
9 ...

Figure 4: One possible code path within the executing code.
Statements highlighted in green are inserted by DOMPLETION

application is parsed to extract both function definitions (Line 2),
and the corresponding code segments (Line 3). The code segments
are then modified to replace the if conditions (Lines 6–18) in order
to track their control-flow. This operation can generate up to 2m dif-
ferent versions, where m is the number of if conditions within the
code segments. The if conditions are replaced recursively start-
ing from the innermost segments and proceeding outwards. For
each newly generated code path, relevant log statements are in-
serted within the code to keep track of the code path (Line 12).
The executing code segment is then combined with function defi-
nitions extracted in Line 2, therefore covering as many code paths
as possible (Lines 20-24).

For the example given in Figure 1, two different code paths are
generated and the results for the code completion will reflect all
these paths. Figure 4 represents one possible code path executed
by the code. The first if condition is removed from the code and
the code path with true block is executed. Note that the code after
Line 7 will not be executed due to the execution of return state-
ment, and will not be considered. The logs generated (Line 22)
after the code execution are then analyzed (Line 23) and a list of
DOM elements referred in the code is generated. The results of
this analysis are used as an input for the next phase.

This execution of JavaScript code is performed in an isolated
environment, by intercepting the calls to DOM API and global ob-
jects. JavaScript code contains references to global objects avail-
able within the browser. These objects can be classified into two

1 create #site -navigation ,
2 local nav|#site -navigation ,
3 create #site -navigation h3,
4 local button|#site -navigation h3,
5 func1 T

Figure 5: Logs generated after path execution. First 6 state-
ments are generated by the execution environment and the last
statement is executed from the JavaScript code under analysis.

Algorithm 2: Generating Regular Expression from given DOM
element locator path

Data: List of DOM element locators from DOM S1, DOM element locator from
JavaScript code S2

Result: Matching set of DOM element locators
1 (Hierarchy) H= splitWithSpace(S2);
2 for i in H do
3 r = createRegex(H[i]);
4 (Matching Set) M= r→ match(S1);
5 if M 6= null then
6 M= R→ removeMatchingPart(M);
7 S1 =M;
8 result = S1;
9 else

10 return /0;
11 break;
12 end
13 end
14 return S1;

main categories [18]: (1) Browser Objects and (2) HTML DOM
Objects. Browser objects include window, navigator, screen, his-
tory, and location. HTML DOM objects include document, and
element objects. These objects expose an API that can be used to
interact with the browser and modify the HTML contents. There-
fore, we need to execute these APIs in an isolated environment.

To execute the objects in an isolated environment, we redefine
the functions within these objects and insert log statements to keep
track of when the particular function was called and what parame-
ters were passed to it. Additional variables are added for the code
analysis purpose. Every reference to DOM element returned by
these re-defined functions contains a property named csspath to
keep track of the DOM element locators attached to that element,
which is then logged. The logs generated after executing the code
path in Figure 4 are presented in Figure 5.

3.4 Suggestion Generation
To provide code completion suggestions, we need to match the

DOM element locators we extracted from the DOM hierarchy to
the DOM element locators used in the JavaScript code. However,
the information available in the DOM element locator is often in-
complete. For example, in Figure 1 at line 4, the developer used
only the tag name to select a particular DOM element. However,
there can be multiple DOM elements with the same tag name. Also,
from the given JavaScript code at line 2, we can see that the parent
object (nav) refers to the DOM element with id site-navigation.
However, this need not be its immediate child, but can be any de-
scendant of that element. Therefore a simple string matching algo-
rithm cannot be used to match the DOM element locators, and we
need an alternative and a flexible way to overcome this problem.

We use the information from DOM element locators to form pat-
terns, and then use the patterns to find relevant suggestion. For ex-
ample, in Figure 1 at line 4, we can see that the developer is looking
for an element with tag name h3 among the descendants of element
with id site-navigation. Therefore, we only look for element



1 RE1 = /[^#\\. ]*(?=[ \\.#])#site -navigation←↩
(\\.[^\\.# ]+)*(\\([^\\) ]+\\))*(?=[ ])/;

2

3 RE2 = /h3(#[^#\\. ]+)*(?=[ \\.]) (\\.[^\\.# ]+)←↩
*(\\([^\\) ]+\\))*(?=[ ])/;

Figure 6: First regular expression matches any type of DOM
element with id=‘site-navigation’ and any number of
classes attached to it. Second regular expression matches all
the h3 tags with any id and any number of classes attached
to them, within the child elements of the previously matched
element.

with tag name h3 among the descendants of the first element. To
express these constraints, we convert the DOM element locators to
regular expressions. We create regular expressions satisfying the
above mentioned criteria and then test these regular expressions
against the DOM element locators available in DOM hierarchy.

The overall approach is presented in Algorithm 2. First we split
the hierarchical information (Line 1) into separate elements. For
example the hierarchical information available at Line 4 in Fig-
ure 1 is #site-navigation h3. We split this information into two
elements: #site-navigation and h3. Then we create a regular
expression (Line 3) for each element in the hierarchy. Regular ex-
pressions for the above two elements are presented in Figure 6. As
the DOM element locator information from JavaScript code may
be incomplete, the regular expressions are conservative to oversee
additional information attached to DOM element locators available
in DOM. Only the DOM element locators from DOM that satisfy
the criteria specified by regular expressions are included in further
analysis (Line 4) and rest of the DOM element locators are dis-
carded. For the matching DOM element locators we then remove
the matching element and its predecessors from the hierarchy (Line
6). For example, for element h3, the generated regular expression
(RE2) will match all the elements that have tag name h3, but this
regular expression will only be tested against the descendants of
elements that match the first regular expression RE1. If no DOM
element locator from the DOM matches the generated regular ex-
pression, the algorithm is terminated (Line 10) and the developer is
notified about the possible anomalies in the DOM element locators
used in the JavaScript code.

4. IMPLEMENTATION
We have implemented our approach in a tool called DOMPLE-

TION1. DOMPLETION is itself built using JavaScript, as a code
completion plugin for the open source editor IDE, Brackets [6].

For the DOM Analysis, we use Brackets Live Development fea-
ture [26]. Using Brackets allow us to integrate web application
crawling within the development environment. Developers can ei-
ther crawl the web application manually therefore covering specific
DOM states or randomly crawl the web application using the Java-
Script crawler available in DOMPLETION.

In the Code Analysis phase, to parse JavaScript code we use
Esprima [10], which is a JavaScript parser written in JavaScript.
Esprima converts the given JavaScript into an Abstract Syntax Tree
(AST). We use the AST to (1) extract function definitions and code
segments, and (2) generate possible code paths. For dynamic anal-
ysis of JavaScript code we use the Function [12] constructor to
execute the code segments within the execution environment (dis-

1https://github.com/saltlab/dompletion

a·=·document.getElementById('maincol').innerHTML;¬
¬
if(a·==·"header")·{¬
····elem·=·document.getElementById('headerBar');¬
}·else·{¬
····elem·=·document.getElementById('photoBoxes');¬
}¬
elem.getElementsByClassName('¶

1
2
3
4
5
6
7
8

 (span) DOM Level: 1
 (div) DOM Level: 1
 (a) DOM Level: 2

 (span) DOM Level: 2
 (span) DOM Level: 2
 (span) DOM Level: 2

 (select) DOM Level: 2
 (span) DOM Level: 3

Path: 0 VeryTitle
Path: 1 photoBox
Path: 0 topHeadAround
Path: 1 titlePhotoBox
Path: 1 darkdot
Path: 1 spc
Path: 1 rate
Path: 1 dot

Figure 7: Screenshot of code-completion using DOMPLETION.
Path indicates the possible code paths within the JavaScript
code. DOM Level indicates the dept of elements in the DOM
hierarchy.

Table 5: Implemented Functions
Function Calling Objects
getElementById() document
querySelector() document, element
getElementsByClassName() document, element
getElementsByTagName() document, element
$(), jQuery() -
children() $,jQuery

cussed in Section 3.3) as we did not want to interfere with the orig-
inal application’s variables.

Figure 7 shows a screenshot of how DOMPLETION works in
practice. The figure shows how DOMPLETION is integrated with
the IDE to provide code completion suggestions on demand.

Supported Functions and DOM element locators. DOMPLE-
TION currently supports a subset of the functions that are used to
fetch DOM elements from JavaScript code. Table 5 list the func-
tions supported by the current version of DOMPLETION. As we
show in our empirical evaluation Section 5, this is sufficient for the
vast majority of the web applications we studied. Currently, DOM-
PLETION supports selecting DOM elements based on tag names,
ids and class names. Adding support for other functions that use
DOM element locators and supporting more DOM element locators
is straightforward. We plan to implement these in future versions
of DOMPLETION.

5. EVALUATION

5.1 Goals and Research Questions
In order to evaluate how effective is DOMPLETION in code com-

pletion, we answer the following research questions in our study.

RQ1: Do DOM element locators for web applications converge,
and if so, what is the convergence rate?

RQ2: How accurate are the code completion suggestions provided
by DOMPLETION?

RQ3: What is the performance overhead incurred by DOMPLE-
TION, and how effective is it in helping web developers with
code completion tasks?

5.2 Methodology
We used three web applications, namely Phormer [35], Gallery3 [13],

and WordPress [40] as case studies to evaluate DOMPLETION. We
answer each question as follows:

RQ1: Convergence. In addition to the three web applications
Phormer, Galery3, and WordPress considered above, we also stud-
ied five major websites including three listed in the top 100 web-
sites on Alexa [1]. We crawled the web applications in a random

https://github.com/saltlab/dompletion
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Figure 8: Convergence of DOM element locators for different
websites.

order until the number of minimized DOM element locators stabi-
lized. For each web application, we measured the number of total,
unique and minimized DOM element locators for each website.

The websites we included were Facebook [11] (User specific
content), Wikipedia [38] (User generated content), Bing [5] (Search
Engine), a Wordpress Blog and an Ajax-based blog. All the appli-
cations chosen for analysis were dynamic in nature, i.e., the DOM
tree generated for these websites is either user or input dependent.

RQ2: Accuracy. We used the Phormer, Gallery3, and WordPress
applications for this RQ. For RQ2, we used DOMPLETION to gen-
erate suggestions after removing some DOM access from the Java-
Script code. We then compared the list of generated suggestions
with the removed code. The list of generated suggestions is con-
sidered valid if it contains the DOM access within the code where
the code completion was initiated. Prior work [8, 25, 17] has used
a similar approach for evaluating code completion systems.

RQ3: Performance. For assessing performance, we used the Pho-
rmer web application. For measuring the performance overhead,
we used DOMPLETION to generate code completion suggestions
for Phormer similar to RQ2. We report the time taken by DOM-
PLETION to generate these suggestions. We also report the time
taken by DOMPLETION in the initialization phase i.e., crawling the
web application.

User study. We also conducted a small scale user study using
Phormer. We compared the time taken by users to perform code-
completion tasks both with and without DOMPLETION. We also
measured the accuracy of the tasks completed by the participants
with and without DOMPLETION.

5.3 Convergence of element locators (RQ1)
We first measure whether the DOM element locators in web ap-

plications converge. We then measure the convergence rate for one
web application, Phormer.

Figure 8 presents the results of our analysis for the five real world
websites and three selected web applications when they converge
(all the websites eventually exhibited convergence). The number of
DOM states in a web application is huge [29], making it difficult
to cover all the DOM states using a reasonable amount of time and
resources. Therefore we focus on number of DOM elements. A de-
tailed example may be found in our companion technical report [3].
As seen from the results, the final converged values of the number
of DOM element locators are a small fraction of their initial val-
ues, showing that all of the websites exhibit patterns in their DOM
element locators. The patterns can be used to predict the structure
of DOM states even if they were not encountered during crawling
(assuming that the patterns hold). Therefore, a code completion
system such as DOMPLETION can detect patterns and provide sug-
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Figure 9: Rate of Convergence of DOM element locators for
Phormer.

gestions even for DOM states that have not been encountered, but
are similar to the ones that have been encountered.

We also measure the convergence rate for the Phormer web ap-
plication as a function of the number of DOM states. The results
are shown in Figure 9. The results for the other web applications
were similar, and are hence not reported. As seen from the graph,
the total number of DOM element locators increase linearly with
each DOM state, while the total number of minimized DOM ele-
ment locators saturates with the growing number of DOM states.
Therefore, we achieve convergence within a relatively small num-
ber of DOM states. This is because DOM states in web applications
exhibit recurring patterns in their DOM element locators, and these
patterns tend to converge quickly with increasing number of DOM
states, as more of the application is crawled.

5.4 Accuracy (RQ2)
We used the Phormer, Gallery3, & WordPress applications for

evaluating the accuracy of DOMPLETION. We evaluated the ef-
ficacy of DOMPLETION for performing code completion on each
DOM JavaScript interaction site in the applications as follows:

1. We remove a DOM element locator used for DOM interaction
from the JavaScript code.

2. DOMPLETION is asked to generate a list of valid DOM element
locators for the removed selector.

3. Based on the list of generated suggestions, and the correspond-
ing accurate DOM element locator, the evaluation metrics de-
fined in Section 5.4.1 are calculated.

5.4.1 Evaluation Metrics
We use precision and recall to assess the efficacy of our tool.

These measures are commonly used for evaluating information re-
trieval systems.

Recall is a measure of the extent to which DOMPLETION can
identify relevant DOM element locators that are actually used by
the developer. A list of suggestions generated by DOMPLETION
may or may not contain the actual DOM element locator used by
the developer. The list is considered valid when it contains the
actual suggestion used by the developer. Recall is defined as the
the total number of valid suggestions versus the total number of
attempts i.e., sum of valid and invalid outputs. In some cases the
DOM element locator used within the JavaScript code is not sup-
ported by the current implementation of DOMPLETION. We com-
pute the recall both with and without the unsupported selectors.

Recall = Valid Out put
Valid Out put ∪ Invalid Out put ∪ Unsupported Selectors

Precision is a measure of DOMPLETION’s ability to filter out
suggestions that are not useful to the developer and present relevant
suggestions at the top of the list. One way to perform the filtering is
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Figure 10: Recall of DOMPLETION

to rank the suggestions and present the ranked list to the developer.
We rank our suggestions based on the hierarchy of DOM elements.
The root element is listed first, followed by its immediate children,
which are in turn followed by the elements at the next level.

The precision is inversely correlated with the rank of the correct
suggestion. Therefore we measure precision based on how far a
suggestion is in the list of suggestions provided by DOMPLETION,
regardless of the number of suggestions provided by the tool. To
normalize the evaluation results, we report precision with respect
to the rank of top 100 suggestions, instead of the rank of correct
suggestion. More precisely, for each increment in the rank of re-
quired suggestion, we decrement the precision by 1%. Therefore,
precision is 100% when the required suggestion is at the first rank
and is 0% when the required suggestions is listed after 100 sugges-
tions. One may think that a more reasonable metric is to use the
ratio of the rank of the correct suggestion divided by the total num-
ber of suggestions. However, this metric can be misleading. For
example, an approach that adds unnecessary suggestions to the list
of suggestion can end up having higher precision if precision was
measured based on the total number of suggestions in the list. Note
that the precision metric discussed above is conservative as we are
looking for the exact match used in the JavaScript code. However,
there is often more than one possible DOM element that can be
used without impacting the correctness.

Precision = MAX(0,100−RankActual Suggestion)

To explain the metrics, we consider the code snippet in Figure 1.
Assume that the developer invokes DOMPLETION when passing
parameters to getElementsByTagName() function at Line 7. The
total number of suggestions generated is 5 (unique tag names in El-
ement 8 – 15) and the rank of the suggestion used by the program-
mer is 4. For this case, the recall would be 100% as the correct
suggestion was provided, and precision would be 96% (100-4).

5.4.2 Accuracy Results
Both precision and recall together allow us to assess the quality

of the system for a given query. We average the precision and recall
values over multiple queries. Figure 10 shows the recall achieved
by the system for the three web applications. As seen from the re-
sults, DOMPLETION can provide code completion suggestions with
a recall of about 89% of the total cases when only supported DOM
element locators are considered, and a recall of about 75% overall
when both supported and non-supported selectors are considered.
Unsupported selectors represent the case when DOM element lo-
cators used in the code were not supported by current version of
DOMPLETION (Section 4). Note that there is no fundamental rea-
son why DOMPLETION cannot be extended to support these selec-
tors, in which case, the recall will increase even further.

Invalid suggestions mean that DOMPLETION did not provide the
correct suggestion among the list of suggestions. There are two
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Figure 11: Precision of DOMPLETION

reasons for the invalid selectors: (1) insufficient coverage of DOM
states of the website in the initial phase of DOMPLETION, because
some modes of the applications required specific user input, which
our automated crawler was not equipped with (e.g., logins), and
(2) lack of support in DOMPLETION for some corner cases in the
JavaScript code such as alert boxes.

Figure 11 shows the precision achieved by the system for the
three web applications. When using code completion systems, de-
velopers typically provide the first one or two keystrokes, and ex-
pect the system to automatically infer the rest. These keystrokes
can be used to sort and prune the suggestions, resulting in better
precision. We report precision for three cases: 1) no input is pro-
vided by the developer, 2) one keystroke is provided, and 3) two
keystrokes are provided.

Recall that in Section 3.1, we introduce hierarchical information
about the DOM into our analysis to prune the search space. To
analyze the effect of this optimization, we present results for the
precision both with and without the hierarchical information.

Case 1: No Hierarchical Information. As seen from the results,
DOMPLETION was able to provide precision of about 45%, when
no inputs are provided by the developer. However, we see that when
one or two keystrokes are provided by the developer, the precision
achieved by DOMPLETION quickly rises up to 90%. Therefore,
DOMPLETION can provide high precision when the user supplies
one or two keystrokes, even without hierarchical information.

Case 2: Hierarchical Information. This part of analysis was
only performed for two of the above web applications (Gallery3
& WordPress), as the code in Phormer did not utilize hierarchy
specific information, and therefore does not benefit from this opti-
mization (and hence its precision does not change). As seen from
the results (Figure 11, Hierarchy), when hierarchical information
about the DOM is utilized, the precision achieved by DOMPLE-
TION is very high. In fact, DOMPLETION can achieve precision of
about 95% even without any input from the developer. When even
one or two keystrokes are provided by the developer, DOMPLE-
TION achieved an accuracy of nearly 100%. Therefore, hierarchical
information can considerably improve the precision of DOMPLE-
TION.

5.5 Performance (RQ3)
For RQ3, we focus on the web application Phormer, to measure

the performance overhead of DOMPLETION.
The overhead of DOMPLETION consists of two parts, namely (1)

time taken to crawl the web application when initializing DOMPLE-
TION, and (2) time take to generate code completion suggestions
when the programmer invokes the code completion functionality.

DOM Analysis. When DOMPLETION is initialized, it first needs to
gather data about the possible DOM states of the web application
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Figure 12: Time overhead incurred during DOM Analysis

by crawling it. This data is then used to provide code completion
suggestions to the developers. After the initialization, the crawling
still continues in the background unnoticed by the developer, and
updates the DOM states. The time required is proportional to the
number of DOM states needed to reach convergence.

Figure 12 shows the time taken to crawl each DOM state for
Phormer, until the state is reached e.g., for DOM state 10, we report
the time taken to crawl DOM states 1 to 10. As shown in the table,
it takes around 173 seconds (about three minutes) to analyze all
14 DOM states, i.e., crawl until the number of minimized DOM
element locators converges to a constant (Section 5.3). Even though
the time taken to analyze the DOM states is relatively high, the
crawling process recedes in the background, and incurs minimal
overhead once the tool is initialized.

Code Analysis. The code completion phase starts when the de-
veloper activates the tool by pressing the code completion hot key.
The time required to analyze the code can vary depending upon the
number of conditional statements within the code, size of code that
needs to be analyzed and number of functions defined within the
code. We calculated the time for all code completion tasks in the
JavaScript code for the three web applications. The time required
to analyze the code varies from 1 to 6 seconds with an average
of about 2.8 seconds, which is quite reasonable for real time code
completion. This latency is comparable to that of code completion
systems for other languages [30, 16, 28].

5.6 User Study
To assess the usefulness of DOMPLETION in helping developers

write JavaScript code, we performed a small scale user study on
Phormer, with 9 student participants (6 males and 3 females) cho-
sen from different educational levels: 1 undergraduate, 4 Master’s
students, and 4 Ph.D. students. Participants were divided in two
groups randomly: Group A (5) and Group B (4). Group A and B
participants had an average of 1.7 and 2.4 years of web develop-
ment experience respectively. Participants in Group A were asked
to use DOMPLETION to complete the tasks, while participants in
Group B were free to use any tool that they were familiar with.
One of the Group B participants used Firebug and the other 3 used
Chrome Dev Tools to complete the tasks.

Table 6 lists the tasks assigned to the participants in this study.
The tasks were based on the web application Phormer. For each
task, participants were supposed to analyze a piece of JavaScript
code from Phormer, and write down the answers. Tasks 1 and
2 focused on understanding the DOM-JavaScript interactions in
the code, while tasks 3 and 4 were focussed on code completion
for DOM-JavaScript interactions. The JavaScript code provided
for each task interacts with and modifies the DOM. Analyzing the
changes in DOM is a non-trivial task that requires careful obser-
vation by the developer. We measured both the times taken by the

Table 6: Categorization of tasks for user study
Category Task ID Task

Affected Elements
Task 1 List out ids of DOM elements being removed

after executing the code given for Task 1.

Task 2 List out ids of DOM elements being removed
after executing the code given for Task 2.

Available Elements
Task 3 List out the possible ids of elements in the

scope of JavaScript object targetElem

Task 4 List out the possible ids of immediate
children of JavaScript object parent.

users and the correctness of the answers for each task. Details of the
tasks and questionnaires used for both experiments can be found in
our technical report [3].

The results of our user study show that there is a significant dif-
ference between the times taken by users in each group to complete
the tasks. On average, users in Group B (without DOMPLETION)
took almost double the time as compared to users in Group A (with
DOMPLETION). Further, the precision and recall achieved by the
users in Group A (90.83%, 97.5%) is relatively high as compared to
the users in Group B (76.25%, 47.5%). The time taken by users in
Group B increased with the number of available code paths. Group
B users took maximum time (5 minutes and 31 seconds) for the
task (Task 3) with maximum number of code paths (3). On the
other hand, the time take by users in Group A was unaffected by
the number of code paths. Thus, DOMPLETION significantly low-
ers the time and improves the accuracy for code completion tasks.

6. DISCUSSION
In this section, we discuss some of the limitations of DOMPLE-

TION, and the threats to the validity of our evaluation.

6.1 Limitations

Library support. DOMPLETION needs to understand library-specific
JavaScript APIs that are used for accessing DOM elements in order
to provide code completion for them. So we need to wrap library
function calls by converting them to DOM element locators. This
is straightforward as every DOM access can be written as a DOM
element locator. Further, this process needs to be done only once
for each library. Currently, DOMPLETION supports calls to jQuery
library and we plan to provide wrappers for other major JavaScript
libraries in the future.

Limited support for DOM API. Currently, DOMPLETION sup-
ports a limited set of DOM API functions (Table 1). Functions
such as getElementsByName and other DOM based functions can
also be supported with minor changes in the system. Further, we
discard much information about the DOM in the DOM analysis
phase. By incorporating that information, we plan to extend our
tool to support as many DOM API functions as possible. Note that
in spite of the above implementation shortcomings, DOMPLETION
was able to offer code completion with high recall for mature web
applications such as Phromer, Gallery3 and Wordpress.

6.2 Threats to Validity

Internal Threats. We evaluated DOMPLETION by crawling the
application using a random strategy, rather than an application-
specific one. Hence, we may not explore all parts of the application
uniformly. This is an internal threat to validity. Adding applica-
tion specific crawling would increase the number of DOM element
locators, which may affect the convergence results in Section 5.3.
However, we find patterns in many popular web applications, and



hence we believe that the DOM element locators explored using
application-specific crawling would also exhibit similar patterns.

Another internal threat is that DOMPLETION modifies the Java-
Script code to insert log statements and remove conditional state-
ments from the code. This may affect the behaviour of the appli-
cation in some cases, especially if the application’s behaviour is
timing dependent. However, we have taken care to ensure that the
modifications are relatively few, and that the execution of code by
DOMPLETION does not interfere with the main application.

Finally, when crawling the web application, we stop after the
number of minimized DOM element locators have stabilized over
a period of time. However, it is possible although unlikely, that the
locators have not really stabilized, and may increase in the future.

External Threats. We considered a limited number of applica-
tions and users to evaluate the correctness and usability of DOM-
PLETION. This is an external threat to validity. However the ap-
plications chosen for evaluation were commonly used open source
applications. We plan to evaluate our tool with a larger number of
users in our future work to mitigate this threat.

Reproducibility. The websites used for analysis in Section 5.3 may
change over time, the number of DOM states and DOM element
locators will differ. However, have made our analysis dataset freely
available for download2 to aid the reproducibility of our results. We
have also made DOMPLETION publicy available.

7. RELATED WORK
We classify related work into two broad categories: code-completion

and JavaScript code analysis.

7.1 Code Completion
Prior work has focussed on providing code-completion based on

different forms of input provided by the developer. For example,
Brandt et al. [7] embedded a task specific search engine in IDE
that can assist the programmers in finding relevant code on web.
Han et al. [16] used machine learning algorithms for completing
code based on abbreviations provided by the developer. Little et
al. [25] used keywords as as inputs to provide code-completion for
Java programs. Omar et al. [34] used graphical methods to pro-
vide code-completion for parameters of object initialization meth-
ods. Sahavechaphan et al. [37] developed a framework that can
be used by the developers to query a sample repository for code
snippets.

There has also been a significant amount of work on improv-
ing the quality of code-completion tools. For example, Hou et al.
[17] used hierarchical information to sort list of code-completion
suggestions, and context based information to filter out invalid sug-
gestions. Bruch et al. [8] mined existing code repositories and
used the results to filter and rank the list of suggestions. Robbes et
al. [36] used program history to assess and improve the quality of
code-completion tools.

The main difference between these studies and ours is that we
focus on providing code-completion for interactions between Java-
Script code and the DOM. This is challenging because JavaScript
is a loosely typed language, and the DOM is a highly dynamic and
evolving entity. Because we dynamically analyze the DOM states
in addition to dynamically evaluating the JavaScript code, we can
correlate the JavaScript code with the DOM. Further, we use the
DOM element locator methods used by the programmer, and the
hierarchical DOM information, as inputs to the code completion
process. To the best of our knowledge we are the first to provide

2http://www.ece.ubc.ca/~kbajaj/dompletion/data.zip

code-completion for DOM based interactions within the JavaScript
code.

7.2 JavaScript Code Analysis
There have been numerous techniques for statically analyzing

JavaScript code. For example, Jensen et al. [22] presented a static
program analysis infrastructure that can infer type information for
JavaScript programs. Madsen et al. [27] statically analyze calls to
JavaScript libraries and the DOM API to generate the program’s
call graph. None of these approaches consider the DOM state and
hence cannot reason about DOM-JavaScript interactions. Jensen et
al. [21] developed a DOM model and used static analysis to reason
about DOM-JavaScript within the web application. However, like
all static analyses, their approach is conservative, as it needs to take
into account all possible static code paths and hence suffers from
false-positives. Further, they use their approach for finding errors
in applications, but not for code completion, which has a different
set of tradeoffs from bug finding (e.g., speed of analysis).

In recent work, Ocariza et al. [33] propose a technique to gener-
ate fixes for DOM-JavaScript interaction errors in web applications.
Similar to our work, they dynamically analyze the JavaScript code
and the DOM states of the web application to generate suggestions
for code that has an erroneous DOM-JavaScript interaction. How-
ever, there are two main differences between their work and ours.
First, they consider complete web applications, where the devel-
oper has made a mistake in DOM interactions, while our goal is
to provide code completion for DOM interactions in web applica-
tions under development. Second, they base their suggestions on
an empirical study of common fixes applied by programmers in
fixing DOM-JavaScript interaction errors. Consequently, their sug-
gestions are biased towards bug fixes. In contrast, our goal is to
help programmers while they are developing the web application,
rather than during bug fixing activities.

8. CONCLUSION AND FUTURE WORK
In this paper, we introduce a code completion approach for Java-

Script based web applications to help programmers with DOM-
JavaScript interactions. Our approach is based on dynamic anal-
ysis of the DOM and JavaScript code, and provides code comple-
tion suggestions based on DOM element locators. We have im-
plemented our approach in a tool called DOMPLETION, which we
evaluate using three open source web applications. We find that
DOMPLETION can provide code completion with a recall of 87%
and a precision of 90% with an average time of 2.5 seconds.

We plan to extend this paper in number of ways. First we have
focussed on sequential JavaScript code. However, JavaScript also
support non-sequential execution i.e., executing code based on time-
outs, intervals and DOM based events. We will extend our tech-
nique to support non-sequential code. Second, the DOMPLETION
tool supports limited DOM element locators, and libraries. Al-
though DOMPLETION achieves acceptable recall with the limited
DOM element locators, expanding this set would allow us to de-
ploy DOMPLETION on a larger set of web applications.
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